Federated Learning Meets Multi-Objective Optimization

نویسندگان

چکیده

Federated learning has emerged as a promising, massively distributed way to train joint deep model over large amounts of edgedevices while keeping private user data strictly on device. In this work, motivated from ensuring fairness among users and robustness against malicious adversaries, we formulate federated multi-objective optimization propose new algorithm FedMGDA+ that is guaranteed converge Pareto stationary solutions. simple implement, fewer hyperparameters tune, refrains sacrificing the performance any participating user. We establish convergence properties point out its connections existing approaches. Extensive experiments variety datasets confirm compares favorably state-of-the-art.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approachability in unknown games: Online learning meets multi-objective optimization

In the standard setting of approachability there are two players and a target set. The players play repeatedly a known vector-valued game where the first player wants to have the average vector-valued payoff converge to the target set which the other player tries to exclude it from this set. We revisit this setting in the spirit of online learning and do not assume that the first player knows t...

متن کامل

Active Learning for Multi-Objective Optimization

In many fields one encounters the challenge of identifying, out of a pool of possible designs, those that simultaneously optimize multiple objectives. This means that usually there is not one optimal design but an entire set of Pareto-optimal ones with optimal tradeoffs in the objectives. In many applications, evaluating one design is expensive; thus, an exhaustive search for the Pareto-optimal...

متن کامل

Federated Multi-Task Learning

Federated learning poses new statistical and systems challenges in training machinelearning models over distributed networks of devices. In this work, we show thatmulti-task learning is naturally suited to handle the statistical challenges of thissetting, and propose a novel systems-aware optimization method, MOCHA, that isrobust to practical systems issues. Our method and theor...

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

Directed Multi-Objective Optimization

While evolutionary computing inspired approaches to multi-objective optimization have many advantages over conventional approaches; they generally do not explicitly exploit directional/gradient information. This can be inefficient if the underlying objectives are reasonably smooth, and this may limit the application of such approaches to real-world problems. This paper develops a local framewor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Network Science and Engineering

سال: 2022

ISSN: ['2334-329X', '2327-4697']

DOI: https://doi.org/10.1109/tnse.2022.3169117